Papers
Topics
Authors
Recent
2000 character limit reached

Vgent: Graph-based Retrieval-Reasoning-Augmented Generation For Long Video Understanding (2510.14032v1)

Published 15 Oct 2025 in cs.CV

Abstract: Understanding and reasoning over long videos pose significant challenges for large video LLMs (LVLMs) due to the difficulty in processing intensive video tokens beyond context window and retaining long-term sequential information. Retrieval-Augmented Generation (RAG) has demonstrated effectiveness in processing long context for LLMs; however, applying RAG to long video faces challenges such as disrupted temporal dependencies and inclusion of irrelevant information that can hinder accurate reasoning. To address these limitations, we propose Vgent, a novel graph-based retrieval-reasoning-augmented generation framework to enhance LVLMs for long video understanding. Our approach introduces two key innovations: (i) It represents videos by structured graphs with semantic relationships across video clips preserved to improve retrieval effectiveness. (ii) It introduces an intermediate reasoning step to mitigate the reasoning limitation of LVLMs, which leverages structured verification to reduce retrieval noise and facilitate the explicit aggregation of relevant information across clips, resulting in more accurate and context-aware responses. We comprehensively evaluate our framework with various open-source LVLMs on three long-video understanding benchmarks. Our approach yielded an overall performance improvement of $3.0\%\sim 5.4\%$ over base models on MLVU, and outperformed state-of-the-art video RAG methods by $8.6\%$. Our code is publicly available at https://xiaoqian-shen.github.io/Vgent.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 1 like about this paper.