Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Filtering Problem for Random Processes with Stationary Increments (2510.14023v1)

Published 15 Oct 2025 in math.ST and stat.TH

Abstract: This paper deals with the problem of optimal mean-square filtering of the linear functionals $A{\xi}=\int_{0}{\infty}a(t)\xi(-t)dt$ and $A_T{\xi}=\int_{0}Ta(t)\xi(-t)dt$ which depend on the unknown values of random process $\xi(t)$ with stationary $n$th increments from observations of process $\xi(t)+\eta(t)$ at points $t\leq0$, where $\eta(t)$ is a stationary process uncorrelated with $\xi(t)$. We propose the values of mean-square errors and spectral characteristics of optimal linear estimates of the functionals when spectral densities of the processes are known. In the case where we can operate only with a set of admissible spectral densities relations that determine the least favorable spectral densities and the minimax spectral characteristics are proposed.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 12 likes.

Upgrade to Pro to view all of the tweets about this paper: