Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 100 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Distributional Consistency Loss: Beyond Pointwise Data Terms in Inverse Problems (2510.13972v1)

Published 15 Oct 2025 in cs.LG, cs.CV, and physics.med-ph

Abstract: Recovering true signals from noisy measurements is a central challenge in inverse problems spanning medical imaging, geophysics, and signal processing. Current solutions balance prior assumptions regarding the true signal (regularization) with agreement to noisy measured data (data-fidelity). Conventional data-fidelity loss functions, such as mean-squared error (MSE) or negative log-likelihood, seek pointwise agreement with noisy measurements, often leading to overfitting to noise. In this work, we instead evaluate data-fidelity collectively by testing whether the observed measurements are statistically consistent with the noise distributions implied by the current estimate. We adopt this aggregated perspective and introduce distributional consistency (DC) loss, a data-fidelity objective that replaces pointwise matching with distribution-level calibration using model-based probability scores for each measurement. DC loss acts as a direct and practical plug-in replacement for standard data consistency terms: i) it is compatible with modern regularizers, ii) it is optimized in the same way as traditional losses, and iii) it avoids overfitting to measurement noise even without the use of priors. Its scope naturally fits many practical inverse problems where the measurement-noise distribution is known and where the measured dataset consists of many independent noisy values. We demonstrate efficacy in two key example application areas: i) in image denoising with deep image prior, using DC instead of MSE loss removes the need for early stopping and achieves higher PSNR; ii) in medical image reconstruction from Poisson-noisy data, DC loss reduces artifacts in highly-iterated reconstructions and enhances the efficacy of hand-crafted regularization. These results position DC loss as a statistically grounded, performance-enhancing alternative to conventional fidelity losses for inverse problems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.