Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 148 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 40 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 183 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Exact Coordinate Descent for High-Dimensional Regularized Huber Regression (2510.13715v1)

Published 15 Oct 2025 in stat.ME

Abstract: We develop an exact coordinate descent algorithm for high-dimensional regularized Huber regression. In contrast to composite gradient descent methods, our algorithm fully exploits the advantages of coordinate descent when the underlying model is sparse. Moreover, unlike existing second-order approximation methods previously introduced in the literature, it remains effective even when the Hessian becomes ill-conditioned due to high correlations among covariates drawn from heavy-tailed distributions. The key idea is that, for each coordinate, marginal increments arise only from inlier observations, while the derivatives remain monotonically increasing over a grid constructed from the partial residuals. Building on conventional coordinate descent strategies, we further propose variable screening rules that selectively determine which variables to update at each iteration, thereby accelerating convergence. To the best of our knowledge, this is the first work to develop a first-order coordinate descent algorithm for penalized Huber loss minimization. We bound the nonasymptotic convergence rate of the proposed algorithm by extending arguments developed for the Lasso and formally characterize the operation of the proposed screening rule. Extensive simulation studies under heavy-tailed and highly-correlated predictors, together with a real data application, demonstrate both the practical efficiency of the method and the benefits of the computational enhancements.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: