VC-Dimension vs Degree: An Uncertainty Principle for Boolean Functions (2510.13705v1)
Abstract: In this paper, we uncover a new uncertainty principle that governs the complexity of Boolean functions. This principle manifests as a fundamental trade-off between two central measures of complexity: a combinatorial complexity of its supported set, captured by its Vapnik-Chervonenkis dimension ($\mathrm{VC}(f)$), and its algebraic structure, captured by its polynomial degree over various fields. We establish two primary inequalities that formalize this trade-off:$\mathrm{VC}(f)+\deg(f)\ge n,$ and $\mathrm{VC}(f)+\deg_{\mathbb{F}_2}(f)\ge n$. In particular, these results recover the classical uncertainty principle on the discrete hypercube, as well as the Sziklai--Weiner's bound in the case of $\mathbb{F}_2$.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.