Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 154 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

VC-Dimension vs Degree: An Uncertainty Principle for Boolean Functions (2510.13705v1)

Published 15 Oct 2025 in math.CO, cs.CC, and cs.DM

Abstract: In this paper, we uncover a new uncertainty principle that governs the complexity of Boolean functions. This principle manifests as a fundamental trade-off between two central measures of complexity: a combinatorial complexity of its supported set, captured by its Vapnik-Chervonenkis dimension ($\mathrm{VC}(f)$), and its algebraic structure, captured by its polynomial degree over various fields. We establish two primary inequalities that formalize this trade-off:$\mathrm{VC}(f)+\deg(f)\ge n,$ and $\mathrm{VC}(f)+\deg_{\mathbb{F}_2}(f)\ge n$. In particular, these results recover the classical uncertainty principle on the discrete hypercube, as well as the Sziklai--Weiner's bound in the case of $\mathbb{F}_2$.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: