Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 95 tok/s Pro
Kimi K2 206 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Information-Theoretic Reward Modeling for Stable RLHF: Detecting and Mitigating Reward Hacking (2510.13694v1)

Published 15 Oct 2025 in cs.LG

Abstract: Despite the success of Reinforcement Learning from Human Feedback (RLHF) in aligning LLMs with human values, reward hacking-or reward over-optimization-remains a major challenge. We identify two key obstacles to its mitigation: (1) reward misgeneralization in reward modeling, where reward models overfit to spurious, preference-irrelevant features; and (2) the lack of suitable regularization during RL optimization, as existing token-level constraints often over-restrict the policy space. To address these issues, we propose InfoRM, an information-theoretic reward modeling framework based on the Information Bottleneck (IB) principle, which filters out preference-irrelevant information to alleviate reward misgeneralization. We further observe that reward-hacked responses manifest as pronounced outliers in InfoRM's IB latent space, measured by Mahalanobis distance from the SFT-induced distribution. Motivated by this, we introduce IBL, a distribution-level regularization that penalizes such deviations, effectively expanding the optimization landscape while maintaining alignment. We prove that IBL is theoretically equivalent to the pessimistic RL objective within the IB latent space. Finally, we present Mahalanobis Outlier Probability (MOP), a statistical metric for quantifying reward hacking severity, enabling principled hyperparameter tuning and online mitigation such as early stopping. Extensive experiments across diverse LLMs and datasets confirm the generality of our findings, the effectiveness of InfoRM and IBL, and the reliability of MOP as a diagnostic tool-collectively advancing the state of RLHF.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.