Papers
Topics
Authors
Recent
2000 character limit reached

Jacobian-Based Interpretation of Nonlinear Neural Encoding Model (2510.13688v1)

Published 15 Oct 2025 in q-bio.NC

Abstract: In recent years, the alignment between artificial neural network (ANN) embeddings and blood oxygenation level dependent (BOLD) responses in functional magnetic resonance imaging (fMRI) via neural encoding models has significantly advanced research on neural representation mechanisms and interpretability in the brain. However, these approaches remain limited in characterizing the brain's inherently nonlinear response properties. To address this, we propose the Jacobian-based Nonlinearity Evaluation (JNE), an interpretability metric for nonlinear neural encoding models. JNE quantifies nonlinearity by statistically measuring the dispersion of local linear mappings (Jacobians) from model representations to predicted BOLD responses, thereby approximating the nonlinearity of BOLD signals. Centered on proposing JNE as a novel interpretability metric, we validated its effectiveness through controlled simulation experiments on various activation functions and network architectures, and further verified it on real fMRI data, demonstrating a hierarchical progression of nonlinear characteristics from primary to higher-order visual cortices, consistent with established cortical organization. We further extended JNE with Sample-Specificity (JNE-SS), revealing stimulus-selective nonlinear response patterns in functionally specialized brain regions. As the first interpretability metric for quantifying nonlinear responses, JNE provides new insights into brain information processing. Code available at https://github.com/Gaitxh/JNE.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

GitHub

Tweets

Sign up for free to view the 1 tweet with 1 like about this paper.