Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Offline and Online KL-Regularized RLHF under Differential Privacy (2510.13512v1)

Published 15 Oct 2025 in cs.LG and cs.AI

Abstract: In this paper, we study the offline and online settings of reinforcement learning from human feedback (RLHF) with KL-regularization -- a widely used objective function in LLM alignment -- under the $\epsilon$ local differential privacy ($\epsilon$-LDP) model on the label of the human preference. In the offline setting, we design an algorithm based on the principle of pessimism and derive a new suboptimality gap of $\tilde{O}(1/[(e\epsilon-1)2 n])$ on the KL-regularized objective under single-policy concentrability. We also prove its optimality by providing a matching lower bound where $n$ is the sample size. In the online setting, we are the first one to theoretically investigate the problem of KL-regularized RLHF with LDP. We design an optimism-based algorithm and derive a logarithmic regret bound of $O(d_{\mathcal{F}}\log (N_{\mathcal{F}}\cdot T) /(e\epsilon-1)2 )$, where $T$ is the total time step, $N_{\mathcal{F}}$ is cardinality of the reward function space $\mathcal{F}$ and $d_{\mathcal{F}}$ is a variant of eluder dimension for RLHF. As a by-product of our analysis, our results also imply the first analysis for online KL-regularized RLHF without privacy. We implement our algorithm in the offline setting to verify our theoretical results and release our open source code at: https://github.com/rushil-thareja/PPKL-RLHF-Official.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: