Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

ExpressNet-MoE: A Hybrid Deep Neural Network for Emotion Recognition (2510.13493v1)

Published 15 Oct 2025 in cs.CV and cs.LG

Abstract: In many domains, including online education, healthcare, security, and human-computer interaction, facial emotion recognition (FER) is essential. Real-world FER is still difficult despite its significance because of some factors such as variable head positions, occlusions, illumination shifts, and demographic diversity. Engagement detection, which is essential for applications like virtual learning and customer services, is frequently challenging due to FER limitations by many current models. In this article, we propose ExpressNet-MoE, a novel hybrid deep learning model that blends both Convolution Neural Networks (CNNs) and Mixture of Experts (MoE) framework, to overcome the difficulties. Our model dynamically chooses the most pertinent expert networks, thus it aids in the generalization and providing flexibility to model across a wide variety of datasets. Our model improves on the accuracy of emotion recognition by utilizing multi-scale feature extraction to collect both global and local facial features. ExpressNet-MoE includes numerous CNN-based feature extractors, a MoE module for adaptive feature selection, and finally a residual network backbone for deep feature learning. To demonstrate efficacy of our proposed model we evaluated on several datasets, and compared with current state-of-the-art methods. Our model achieves accuracies of 74.77% on AffectNet (v7), 72.55% on AffectNet (v8), 84.29% on RAF-DB, and 64.66% on FER-2013. The results show how adaptive our model is and how it may be used to develop end-to-end emotion recognition systems in practical settings. Reproducible codes and results are made publicly accessible at https://github.com/DeeptimaanB/ExpressNet-MoE.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: