Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 38 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Tactile-Conditioned Diffusion Policy for Force-Aware Robotic Manipulation (2510.13324v1)

Published 15 Oct 2025 in cs.RO

Abstract: Contact-rich manipulation depends on applying the correct grasp forces throughout the manipulation task, especially when handling fragile or deformable objects. Most existing imitation learning approaches often treat visuotactile feedback only as an additional observation, leaving applied forces as an uncontrolled consequence of gripper commands. In this work, we present Force-Aware Robotic Manipulation (FARM), an imitation learning framework that integrates high-dimensional tactile data to infer tactile-conditioned force signals, which in turn define a matching force-based action space. We collect human demonstrations using a modified version of the handheld Universal Manipulation Interface (UMI) gripper that integrates a GelSight Mini visual tactile sensor. For deploying the learned policies, we developed an actuated variant of the UMI gripper with geometry matching our handheld version. During policy rollouts, the proposed FARM diffusion policy jointly predicts robot pose, grip width, and grip force. FARM outperforms several baselines across three tasks with distinct force requirements -- high-force, low-force, and dynamic force adaptation -- demonstrating the advantages of its two key components: leveraging force-grounded, high-dimensional tactile observations and a force-based control space. The codebase and design files are open-sourced and available at https://tactile-farm.github.io .

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: