Tactile-Conditioned Diffusion Policy for Force-Aware Robotic Manipulation (2510.13324v1)
Abstract: Contact-rich manipulation depends on applying the correct grasp forces throughout the manipulation task, especially when handling fragile or deformable objects. Most existing imitation learning approaches often treat visuotactile feedback only as an additional observation, leaving applied forces as an uncontrolled consequence of gripper commands. In this work, we present Force-Aware Robotic Manipulation (FARM), an imitation learning framework that integrates high-dimensional tactile data to infer tactile-conditioned force signals, which in turn define a matching force-based action space. We collect human demonstrations using a modified version of the handheld Universal Manipulation Interface (UMI) gripper that integrates a GelSight Mini visual tactile sensor. For deploying the learned policies, we developed an actuated variant of the UMI gripper with geometry matching our handheld version. During policy rollouts, the proposed FARM diffusion policy jointly predicts robot pose, grip width, and grip force. FARM outperforms several baselines across three tasks with distinct force requirements -- high-force, low-force, and dynamic force adaptation -- demonstrating the advantages of its two key components: leveraging force-grounded, high-dimensional tactile observations and a force-based control space. The codebase and design files are open-sourced and available at https://tactile-farm.github.io .
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.