Papers
Topics
Authors
Recent
2000 character limit reached

Two Heads Are Better Than One: Audio-Visual Speech Error Correction with Dual Hypotheses

Published 15 Oct 2025 in eess.AS, cs.CL, and cs.LG | (2510.13281v1)

Abstract: This paper introduces a new paradigm for generative error correction (GER) framework in audio-visual speech recognition (AVSR) that reasons over modality-specific evidences directly in the language space. Our framework, DualHyp, empowers a LLM to compose independent N-best hypotheses from separate automatic speech recognition (ASR) and visual speech recognition (VSR) models. To maximize the effectiveness of DualHyp, we further introduce RelPrompt, a noise-aware guidance mechanism that provides modality-grounded prompts to the LLM. RelPrompt offers the temporal reliability of each modality stream, guiding the model to dynamically switch its focus between ASR and VSR hypotheses for an accurate correction. Under various corruption scenarios, our framework attains up to 57.7% error rate gain on the LRS2 benchmark over standard ASR baseline, contrary to single-stream GER approaches that achieve only 10% gain. To facilitate research within our DualHyp framework, we release the code and the dataset comprising ASR and VSR hypotheses at https://github.com/sungnyun/dualhyp.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

GitHub

Tweets

Sign up for free to view the 1 tweet with 2 likes about this paper.