Papers
Topics
Authors
Recent
2000 character limit reached

EPIPTrack: Rethinking Prompt Modeling with Explicit and Implicit Prompts for Multi-Object Tracking (2510.13235v1)

Published 15 Oct 2025 in cs.CV

Abstract: Multimodal semantic cues, such as textual descriptions, have shown strong potential in enhancing target perception for tracking. However, existing methods rely on static textual descriptions from LLMs, which lack adaptability to real-time target state changes and prone to hallucinations. To address these challenges, we propose a unified multimodal vision-language tracking framework, named EPIPTrack, which leverages explicit and implicit prompts for dynamic target modeling and semantic alignment. Specifically, explicit prompts transform spatial motion information into natural language descriptions to provide spatiotemporal guidance. Implicit prompts combine pseudo-words with learnable descriptors to construct individualized knowledge representations capturing appearance attributes. Both prompts undergo dynamic adjustment via the CLIP text encoder to respond to changes in target state. Furthermore, we design a Discriminative Feature Augmentor to enhance visual and cross-modal representations. Extensive experiments on MOT17, MOT20, and DanceTrack demonstrate that EPIPTrack outperforms existing trackers in diverse scenarios, exhibiting robust adaptability and superior performance.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.