Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 171 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Sample-Centric Multi-Task Learning for Detection and Segmentation of Industrial Surface Defects (2510.13226v1)

Published 15 Oct 2025 in cs.CV and cs.LG

Abstract: Industrial surface defect inspection for sample-wise quality control (QC) must simultaneously decide whether a given sample contains defects and localize those defects spatially. In real production lines, extreme foreground-background imbalance, defect sparsity with a long-tailed scale distribution, and low contrast are common. As a result, pixel-centric training and evaluation are easily dominated by large homogeneous regions, making it difficult to drive models to attend to small or low-contrast defects-one of the main bottlenecks for deployment. Empirically, existing models achieve strong pixel-overlap metrics (e.g., mIoU) but exhibit insufficient stability at the sample level, especially for sparse or slender defects. The root cause is a mismatch between the optimization objective and the granularity of QC decisions. To address this, we propose a sample-centric multi-task learning framework and evaluation suite. Built on a shared-encoder architecture, the method jointly learns sample-level defect classification and pixel-level mask localization. Sample-level supervision modulates the feature distribution and, at the gradient level, continually boosts recall for small and low-contrast defects, while the segmentation branch preserves boundary and shape details to enhance per-sample decision stability and reduce misses. For evaluation, we propose decision-linked metrics, Seg_mIoU and Seg_Recall, which remove the bias of classical mIoU caused by empty or true-negative samples and tightly couple localization quality with sample-level decisions. Experiments on two benchmark datasets demonstrate that our approach substantially improves the reliability of sample-level decisions and the completeness of defect localization.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: