Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 137 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 207 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

GRACE: Globally-Seeded Representation-Aware Cluster-Specific Evolution for Compiler Auto-Tuning (2510.13176v1)

Published 15 Oct 2025 in cs.SE

Abstract: Compiler pass selection and phase ordering present a significant challenge in achieving optimal program performance, particularly for objectives like code size reduction. Standard compiler heuristics offer general applicability but often yield suboptimal, program-specific results due to their one-size-fits-all nature. While iterative compilation can find tailored solutions, its prohibitive search cost limits practical use. Machine learning approaches promise faster inference but frequently struggle with generalization to unseen programs. This paper introduces GRACE, a novel framework for compiler auto-tuning, demonstrated for LLVM IR instruction count optimization. GRACE effectively curtails the search space by leveraging pass synergies and a weighted scoring method to generate initial high-quality candidate sequences and a pass pool. It then employs contrastive learning, using pass sequence-based data augmentation, to create program embeddings that facilitate similarity-aware clustering. Evolutionary search within these clusters yields a coreset of $k$ specialized pass sequences designed for robust generalization to unseen programs. At test time, GRACE efficiently selects the best coreset sequence and refines it using lightweight techniques. Experimental results on seven diverse datasets show that GRACE reduces LLVM IR instruction count by an average of 10.09% on LLVM 10.0.0 and 10.19% on LLVM 18.1.6 compared to opt -Oz, while incurring an average tuning time of less than 1s per program, demonstrating its state-of-the-art performance and practical effectiveness.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.