Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 185 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Behavioral Embeddings of Programs: A Quasi-Dynamic Approach for Optimization Prediction (2510.13158v1)

Published 15 Oct 2025 in cs.LG and cs.AI

Abstract: Learning effective numerical representations, or embeddings, of programs is a fundamental prerequisite for applying machine learning to automate and enhance compiler optimization. Prevailing paradigms, however, present a dilemma. Static representations, derived from source code or intermediate representation (IR), are efficient and deterministic but offer limited insight into how a program will behave or evolve under complex code transformations. Conversely, dynamic representations, which rely on runtime profiling, provide profound insights into performance bottlenecks but are often impractical for large-scale tasks due to prohibitive overhead and inherent non-determinism. This paper transcends this trade-off by proposing a novel quasi-dynamic framework for program representation. The core insight is to model a program's optimization sensitivity. We introduce the Program Behavior Spectrum, a new representation generated by probing a program's IR with a diverse set of optimization sequences and quantifying the resulting changes in its static features. To effectively encode this high-dimensional, continuous spectrum, we pioneer a compositional learning approach. Product Quantization is employed to discretize the continuous reaction vectors into structured, compositional sub-words. Subsequently, a multi-task Transformer model, termed PQ-BERT, is pre-trained to learn the deep contextual grammar of these behavioral codes. Comprehensive experiments on two representative compiler optimization tasks -- Best Pass Prediction and -Oz Benefit Prediction -- demonstrate that our method outperforms state-of-the-art static baselines. Our code is publicly available at https://github.com/Panhaolin2001/PREP/.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com