Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 119 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 425 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Neural Triangular Transport Maps: A New Approach Towards Sampling in Lattice QCD (2510.13112v1)

Published 15 Oct 2025 in cs.LG, hep-lat, physics.comp-ph, and stat.ML

Abstract: Lattice field theories are fundamental testbeds for computational physics; yet, sampling their Boltzmann distributions remains challenging due to multimodality and long-range correlations. While normalizing flows offer a promising alternative, their application to large lattices is often constrained by prohibitive memory requirements and the challenge of maintaining sufficient model expressivity. We propose sparse triangular transport maps that explicitly exploit the conditional independence structure of the lattice graph under periodic boundary conditions using monotone rectified neural networks (MRNN). We introduce a comprehensive framework for triangular transport maps that navigates the fundamental trade-off between \emph{exact sparsity} (respecting marginal conditional independence in the target distribution) and \emph{approximate sparsity} (computational tractability without fill-ins). Restricting each triangular map component to a local past enables site-wise parallel evaluation and linear time complexity in lattice size $N$, while preserving the expressive, invertible structure. Using $\phi4$ in two dimensions as a controlled setting, we analyze how node labelings (orderings) affect the sparsity and performance of triangular maps. We compare against Hybrid Monte Carlo (HMC) and established flow approaches (RealNVP).

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: