Papers
Topics
Authors
Recent
2000 character limit reached

IGA Laplace Eigenfrequencies Distributions and Estimations: Impact of Reparametrization on Eigenfrequency Behavior (2510.12632v1)

Published 14 Oct 2025 in math.NA, cs.NA, and math.SP

Abstract: This work addresses the Galerkin isogeometric discretization of the one-dimensional Laplace eigenvalue problem subject to homogeneous Dirichlet boundary conditions on a bounded interval. We employ GLT theory to analyze the behavior of the eigenfrequencies when a reparametrization is applied to the computational domain. Under suitable assumptions on the reparametrization transformation, we prove that a structured pattern emerges in the distribution of eigenfrequencies when the problem is reframed through GLT-symbol analysis. Additionally, we establish results that refine and extend those of [3], including a uniform discrete Weyl's law. Furthermore, we derive several eigenfrequency estimates by establishing that the symbol exhibits asymptotically linear behavior near zero.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.