Papers
Topics
Authors
Recent
2000 character limit reached

M3ST-DTI: A multi-task learning model for drug-target interactions based on multi-modal features and multi-stage alignment (2510.12445v1)

Published 14 Oct 2025 in cs.MM

Abstract: Accurate prediction of drug-target interactions (DTI) is pivotal in drug discovery. However, existing approaches often fail to capture deep intra-modal feature interactions or achieve effective cross-modal alignment, limiting predictive performance and generalization. To address these challenges, we propose M3ST-DTI, a multi-task learning model that enables multi-stage integration and alignment of multi modal features for DTI prediction. M3ST-DTI incorporates three types of features-textual, structural, and functional and enhances intra-modal representations using self-attention mechanisms and a hybrid pooling graph attention module. For early-stage feature alignment and fusion, the model in tegrates MCA with Gram loss as a structural constraint. In the later stage, a BCA module captures fine-grained interactions between drugs and targets within each modality, while a deep orthogonal fusion module mitigates feature redundancy.Extensive evaluations on benchmark datasets demonstrate that M3ST-DTI consistently outperforms state-of-the art methods across diverse metrics

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.