Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 161 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 24 tok/s Pro
GPT-4o 120 tok/s Pro
Kimi K2 142 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Tokenization Disparities as Infrastructure Bias: How Subword Systems Create Inequities in LLM Access and Efficiency (2510.12389v1)

Published 14 Oct 2025 in cs.CL and cs.AI

Abstract: Tokenization disparities pose a significant barrier to achieving equitable access to artificial intelligence across linguistically diverse populations. This study conducts a large-scale cross-linguistic evaluation of tokenization efficiency in over 200 languages to systematically quantify computational inequities in LLMs. Using a standardized experimental framework, we applied consistent preprocessing and normalization protocols, followed by uniform tokenization through the tiktoken library across all language samples. Comprehensive tokenization statistics were collected using established evaluation metrics, including Tokens Per Sentence (TPS) and Relative Tokenization Cost (RTC), benchmarked against English baselines. Our cross-linguistic analysis reveals substantial and systematic disparities: Latin-script languages consistently exhibit higher tokenization efficiency, while non-Latin and morphologically complex languages incur significantly greater token inflation, often 3-5 times higher RTC ratios. These inefficiencies translate into increased computational costs and reduced effective context utilization for underrepresented languages. Overall, the findings highlight structural inequities in current AI systems, where speakers of low-resource and non-Latin languages face disproportionate computational disadvantages. Future research should prioritize the development of linguistically informed tokenization strategies and adaptive vocabulary construction methods that incorporate typological diversity, ensuring more inclusive and computationally equitable multilingual AI systems.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.