Papers
Topics
Authors
Recent
2000 character limit reached

LLM-REVal: Can We Trust LLM Reviewers Yet? (2510.12367v1)

Published 14 Oct 2025 in cs.CL and cs.AI

Abstract: The rapid advancement of LLMs has inspired researchers to integrate them extensively into the academic workflow, potentially reshaping how research is practiced and reviewed. While previous studies highlight the potential of LLMs in supporting research and peer review, their dual roles in the academic workflow and the complex interplay between research and review bring new risks that remain largely underexplored. In this study, we focus on how the deep integration of LLMs into both peer-review and research processes may influence scholarly fairness, examining the potential risks of using LLMs as reviewers by simulation. This simulation incorporates a research agent, which generates papers and revises, alongside a review agent, which assesses the submissions. Based on the simulation results, we conduct human annotations and identify pronounced misalignment between LLM-based reviews and human judgments: (1) LLM reviewers systematically inflate scores for LLM-authored papers, assigning them markedly higher scores than human-authored ones; (2) LLM reviewers persistently underrate human-authored papers with critical statements (e.g., risk, fairness), even after multiple revisions. Our analysis reveals that these stem from two primary biases in LLM reviewers: a linguistic feature bias favoring LLM-generated writing styles, and an aversion toward critical statements. These results highlight the risks and equity concerns posed to human authors and academic research if LLMs are deployed in the peer review cycle without adequate caution. On the other hand, revisions guided by LLM reviews yield quality gains in both LLM-based and human evaluations, illustrating the potential of the LLMs-as-reviewers for early-stage researchers and enhancing low-quality papers.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.