Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 152 tok/s
Gemini 2.5 Pro 25 tok/s Pro
GPT-5 Medium 20 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 134 tok/s Pro
GPT OSS 120B 437 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Beating Harmful Stereotypes Through Facts: RAG-based Counter-speech Generation (2510.12316v1)

Published 14 Oct 2025 in cs.CL

Abstract: Counter-speech generation is at the core of many expert activities, such as fact-checking and hate speech, to counter harmful content. Yet, existing work treats counter-speech generation as pure text generation task, mainly based on LLMs or NGO experts. These approaches show severe drawbacks due to the limited reliability and coherence in the generated countering text, and in scalability, respectively. To close this gap, we introduce a novel framework to model counter-speech generation as knowledge-wise text generation process. Our framework integrates advanced Retrieval-Augmented Generation (RAG) pipelines to ensure the generation of trustworthy counter-speech for 8 main target groups identified in the hate speech literature, including women, people of colour, persons with disabilities, migrants, Muslims, Jews, LGBT persons, and other. We built a knowledge base over the United Nations Digital Library, EUR-Lex and the EU Agency for Fundamental Rights, comprising a total of 32,792 texts. We use the MultiTarget-CONAN dataset to empirically assess the quality of the generated counter-speech, both through standard metrics (i.e., JudgeLM) and a human evaluation. Results show that our framework outperforms standard LLM baselines and competitive approach, on both assessments. The resulting framework and the knowledge base pave the way for studying trustworthy and sound counter-speech generation, in hate speech and beyond.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.