Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 98 tok/s Pro
Kimi K2 195 tok/s Pro
GPT OSS 120B 442 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Learning Latent Energy-Based Models via Interacting Particle Langevin Dynamics (2510.12311v1)

Published 14 Oct 2025 in stat.ML, cs.LG, and stat.CO

Abstract: We develop interacting particle algorithms for learning latent variable models with energy-based priors. To do so, we leverage recent developments in particle-based methods for solving maximum marginal likelihood estimation (MMLE) problems. Specifically, we provide a continuous-time framework for learning latent energy-based models, by defining stochastic differential equations (SDEs) that provably solve the MMLE problem. We obtain a practical algorithm as a discretisation of these SDEs and provide theoretical guarantees for the convergence of the proposed algorithm. Finally, we demonstrate the empirical effectiveness of our method on synthetic and image datasets.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 24 likes.

Upgrade to Pro to view all of the tweets about this paper: