Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 33 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 202 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Nonparametric Identification and Estimation of Spatial Treatment Effect Boundaries: Evidence from 42 Million Pollution Observations (2510.12289v1)

Published 14 Oct 2025 in econ.EM

Abstract: This paper develops a nonparametric framework for identifying and estimating spatial boundaries of treatment effects in settings with geographic spillovers. While atmospheric dispersion theory predicts exponential decay of pollution under idealized assumptions, these assumptions -- steady winds, homogeneous atmospheres, flat terrain -- are systematically violated in practice. I establish nonparametric identification of spatial boundaries under weak smoothness and monotonicity conditions, propose a kernel-based estimator with data-driven bandwidth selection, and derive asymptotic theory for inference. Using 42 million satellite observations of NO$_2$ concentrations near coal plants (2019-2021), I find that nonparametric kernel regression reduces prediction errors by 1.0 percentage point on average compared to parametric exponential decay assumptions, with largest improvements at policy-relevant distances: 2.8 percentage points at 10 km (near-source impacts) and 3.7 percentage points at 100 km (long-range transport). Parametric methods systematically underestimate near-source concentrations while overestimating long-range decay. The COVID-19 pandemic provides a natural experiment validating the framework's temporal sensitivity: NO$_2$ concentrations dropped 4.6\% in 2020, then recovered 5.7\% in 2021. These results demonstrate that flexible, data-driven spatial methods substantially outperform restrictive parametric assumptions in environmental policy applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: