Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 157 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 397 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Learning Mean-Field Games through Mean-Field Actor-Critic Flow (2510.12180v1)

Published 14 Oct 2025 in math.OC and cs.LG

Abstract: We propose the Mean-Field Actor-Critic (MFAC) flow, a continuous-time learning dynamics for solving mean-field games (MFGs), combining techniques from reinforcement learning and optimal transport. The MFAC framework jointly evolves the control (actor), value function (critic), and distribution components through coupled gradient-based updates governed by partial differential equations (PDEs). A central innovation is the Optimal Transport Geodesic Picard (OTGP) flow, which drives the distribution toward equilibrium along Wasserstein-2 geodesics. We conduct a rigorous convergence analysis using Lyapunov functionals and establish global exponential convergence of the MFAC flow under a suitable timescale. Our results highlight the algorithmic interplay among actor, critic, and distribution components. Numerical experiments illustrate the theoretical findings and demonstrate the effectiveness of the MFAC framework in computing MFG equilibria.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 6 likes.

Upgrade to Pro to view all of the tweets about this paper: