Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 189 tok/s
Gemini 2.5 Pro 53 tok/s Pro
GPT-5 Medium 36 tok/s Pro
GPT-5 High 36 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 160 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Towards Inference-time Scaling for Continuous Space Reasoning (2510.12167v1)

Published 14 Oct 2025 in cs.CL

Abstract: Inference-time scaling through multiple sample generation in combination with Process- or Outcome-Reward Model (PRM or ORM) re-ranking has proven effective for text-based reasoning in LLMs. This paper investigates whether such established techniques can be successfully adapted to reasoning in the continuous space, using COCONUT (Hao et al. 2024) continuous space reasoning LM as the backbone. We demonstrate the feasibility of generating diverse reasoning paths through dropout-based sampling. Our Pass@N analysis on the generated samples reveals the potential that could enable a significant gain in performance akin to observed gain in the discrete space. However, we highlight unique challenges faced for materializing this gain in the continuous thought space. In particular, working recipes for data generation and training PRM and ORM models in the discrete space unlocks only marginal improvements in the continuous space. Through probing various aspects including geometric properties and trajectory dynamics we identify the underlying reasons that prevent effective discrimination between correct and incorrect reasoning (essential for the functioning of PRM and ORM). Our findings reveal that current limitations stem from the absence of key inductive biases in continuous thought representations. We argue that the training frameworks for continuous reasoning LMs require not only to optimize for accuracy but also to explicitly incorporate inductive biases that could be utilized during inference-time for discrimination of correct and incorrect thoughts.\footnote{Our code and data will be publicly available.}

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 0 likes.

Upgrade to Pro to view all of the tweets about this paper: