Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 37 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Follow-the-Perturbed-Leader for Decoupled Bandits: Best-of-Both-Worlds and Practicality (2510.12152v1)

Published 14 Oct 2025 in stat.ML and cs.LG

Abstract: We study the decoupled multi-armed bandit (MAB) problem, where the learner selects one arm for exploration and one arm for exploitation in each round. The loss of the explored arm is observed but not counted, while the loss of the exploited arm is incurred without being observed. We propose a policy within the Follow-the-Perturbed-Leader (FTPL) framework using Pareto perturbations. Our policy achieves (near-)optimal regret regardless of the environment, i.e., Best-of-Both-Worlds (BOBW): constant regret in the stochastic regime, improving upon the optimal bound of the standard MABs, and minimax optimal regret in the adversarial regime. Moreover, the practicality of our policy stems from avoiding both the convex optimization step required by the previous BOBW policy, Decoupled-Tsallis-INF (Rouyer & Seldin, 2020), and the resampling step that is typically necessary in FTPL. Consequently, it achieves substantial computational improvement, about $20$ times faster than Decoupled-Tsallis-INF, while also demonstrating better empirical performance in both regimes. Finally, we empirically show that our approach outperforms a pure exploration policy, and that naively combining a pure exploration with a standard exploitation policy is suboptimal.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 17 likes.

Upgrade to Pro to view all of the tweets about this paper: