Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 104 tok/s
Gemini 3.0 Pro 36 tok/s Pro
Gemini 2.5 Flash 133 tok/s Pro
Kimi K2 216 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Hierarchical Alignment: Surgical Fine-Tuning via Functional Layer Specialization in Large Language Models (2510.12044v1)

Published 14 Oct 2025 in cs.CL and cs.AI

Abstract: Existing alignment techniques for LLMs, such as Direct Preference Optimization (DPO), typically treat the model as a monolithic entity, applying uniform optimization pressure across all layers. This approach overlooks the functional specialization within the Transformer architecture, where different layers are known to handle distinct tasks from syntax to abstract reasoning. In this paper, we challenge this one-size-fits-all paradigm by introducing Hierarchical Alignment, a novel method that applies targeted DPO to distinct functional blocks of a model's layers: local (syntax), intermediate (logic), and global (factuality). Through a series of controlled experiments on state-of-the-art models like Llama-3.1-8B and Qwen1.5-7B using LoRA for surgical fine-tuning, our results, evaluated by a powerful LLM-as-Judge, demonstrate significant and predictable improvements. Specifically, aligning the local layers (Local-Align) enhances grammatical fluency. More importantly, aligning the global layers (Global-Align) not only improves factual consistency as hypothesized but also proves to be the most effective strategy for enhancing logical coherence, outperforming all baselines. Critically, all hierarchical strategies successfully avoid the "alignment tax" observed in standard DPO, where gains in fluency come at the cost of degraded logical reasoning. These findings establish a more resource-efficient, controllable, and interpretable path for model alignment, highlighting the immense potential of shifting from monolithic optimization to structure-aware surgical fine-tuning to build more advanced and reliable LLMs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.