Papers
Topics
Authors
Recent
2000 character limit reached

PanoTPS-Net: Panoramic Room Layout Estimation via Thin Plate Spline Transformation (2510.11992v1)

Published 13 Oct 2025 in cs.CV and cs.AI

Abstract: Accurately estimating the 3D layout of rooms is a crucial task in computer vision, with potential applications in robotics, augmented reality, and interior design. This paper proposes a novel model, PanoTPS-Net, to estimate room layout from a single panorama image. Leveraging a Convolutional Neural Network (CNN) and incorporating a Thin Plate Spline (TPS) spatial transformation, the architecture of PanoTPS-Net is divided into two stages: First, a convolutional neural network extracts the high-level features from the input images, allowing the network to learn the spatial parameters of the TPS transformation. Second, the TPS spatial transformation layer is generated to warp a reference layout to the required layout based on the predicted parameters. This unique combination empowers the model to properly predict room layouts while also generalizing effectively to both cuboid and non-cuboid layouts. Extensive experiments on publicly available datasets and comparisons with state-of-the-art methods demonstrate the effectiveness of the proposed method. The results underscore the model's accuracy in room layout estimation and emphasize the compatibility between the TPS transformation and panorama images. The robustness of the model in handling both cuboid and non-cuboid room layout estimation is evident with a 3DIoU value of 85.49, 86.16, 81.76, and 91.98 on PanoContext, Stanford-2D3D, Matterport3DLayout, and ZInD datasets, respectively. The source code is available at: https://github.com/HatemHosam/PanoTPS_Net.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: