Papers
Topics
Authors
Recent
2000 character limit reached

GRAVITY: A Framework for Personalized Text Generation via Profile-Grounded Synthetic Preferences (2510.11952v1)

Published 13 Oct 2025 in cs.CL

Abstract: Personalization in LLMs often relies on costly human feedback or interaction logs, limiting scalability and neglecting deeper user attributes. To reduce the reliance on human annotations, we introduce GRAVITY (Generative Response with Aligned Values, Interests, and Traits of You), a framework for generating synthetic, profile-grounded preference data that captures users' interests, values, beliefs, and personality traits. By integrating demographic, cultural, and psychological frameworks -- including Hofstede's cultural dimensions, Schwartz's basic values, the World Values Survey, and Big Five OCEAN traits -- GRAVITY synthesizes preference pairs to guide personalized content generation. We evaluate GRAVITY on book descriptions for 400 Amazon users, comparing it to prompt-based conditioning, standard fine-tuning, and naive synthetic pair generation. Profile-grounded synthetic data consistently improves generation, especially across multiple cultures (USA, Brazil, Japan, India), achieving over 4% higher preference gains across baselines, with user studies showing that GRAVITY outputs are preferred over 86% of the time. Our results show that scenario-grounded synthetic data can capture richer user variation, reduce reliance on costly annotation, and produce more engaging, user-centered content, offering a scalable path for LLM personalization.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.