Papers
Topics
Authors
Recent
2000 character limit reached

Simplifying Optimal Transport through Schatten-$p$ Regularization (2510.11910v1)

Published 13 Oct 2025 in stat.ML and cs.LG

Abstract: We propose a new general framework for recovering low-rank structure in optimal transport using Schatten-$p$ norm regularization. Our approach extends existing methods that promote sparse and interpretable transport maps or plans, while providing a unified and principled family of convex programs that encourage low-dimensional structure. The convexity of our formulation enables direct theoretical analysis: we derive optimality conditions and prove recovery guarantees for low-rank couplings and barycentric maps in simplified settings. To efficiently solve the proposed program, we develop a mirror descent algorithm with convergence guarantees for $p \geq 1$. Experiments on synthetic and real data demonstrate the method's efficiency, scalability, and ability to recover low-rank transport structures.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 2 tweets with 21 likes about this paper.