Task-Specific Dual-Model Framework for Comprehensive Traffic Safety Video Description and Analysis (2510.11907v1)
Abstract: Traffic safety analysis requires complex video understanding to capture fine-grained behavioral patterns and generate comprehensive descriptions for accident prevention. In this work, we present a unique dual-model framework that strategically utilizes the complementary strengths of VideoLLaMA and Qwen2.5-VL through task-specific optimization to address this issue. The core insight behind our approach is that separating training for captioning and visual question answering (VQA) tasks minimizes task interference and allows each model to specialize more effectively. Experimental results demonstrate that VideoLLaMA is particularly effective in temporal reasoning, achieving a CIDEr score of 1.1001, while Qwen2.5-VL excels in visual understanding with a VQA accuracy of 60.80\%. Through extensive experiments on the WTS dataset, our method achieves an S2 score of 45.7572 in the 2025 AI City Challenge Track 2, placing 10th on the challenge leaderboard. Ablation studies validate that our separate training strategy outperforms joint training by 8.6\% in VQA accuracy while maintaining captioning quality.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.