Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 39 tok/s Pro
GPT-4o 101 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Martingale Kernel Two-Sample Test (2510.11853v1)

Published 13 Oct 2025 in stat.ME, math.ST, and stat.TH

Abstract: The Maximum Mean Discrepancy (MMD) is a widely used multivariate distance metric for two-sample testing. The standard MMD test statistic has an intractable null distribution typically requiring costly resampling or permutation approaches for calibration. In this work we leverage a martingale interpretation of the estimated squared MMD to propose martingale MMD (mMMD), a quadratic-time statistic which has a limiting standard Gaussian distribution under the null. Moreover we show that the test is consistent against any fixed alternative and for large sample sizes, mMMD offers substantial computational savings over the standard MMD test, with only a minor loss in power.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.