Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Contrastive Dimension Reduction: A Systematic Review (2510.11847v1)

Published 13 Oct 2025 in stat.ME, math.ST, stat.CO, stat.ML, and stat.TH

Abstract: Contrastive dimension reduction (CDR) methods aim to extract signal unique to or enriched in a treatment (foreground) group relative to a control (background) group. This setting arises in many scientific domains, such as genomics, imaging, and time series analysis, where traditional dimension reduction techniques such as Principal Component Analysis (PCA) may fail to isolate the signal of interest. In this review, we provide a systematic overview of existing CDR methods. We propose a pipeline for analyzing case-control studies together with a taxonomy of CDR methods based on their assumptions, objectives, and mathematical formulations, unifying disparate approaches under a shared conceptual framework. We highlight key applications and challenges in existing CDR methods, and identify open questions and future directions. By providing a clear framework for CDR and its applications, we aim to facilitate broader adoption and motivate further developments in this emerging field.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com
Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 3 tweets and received 19 likes.

Upgrade to Pro to view all of the tweets about this paper: