Data or Language Supervision: What Makes CLIP Better than DINO? (2510.11835v1)
Abstract: CLIP outperforms self-supervised models like DINO as vision encoders for vision-LLMs (VLMs), but it remains unclear whether this advantage stems from CLIP's language supervision or its much larger training data. To disentangle these factors, we pre-train CLIP and DINO under controlled settings -- using the same architecture, dataset, and training configuration -- achieving similar ImageNet accuracy. Embedding analysis shows that CLIP captures high-level semantics (e.g., object categories, text), while DINO is more responsive to low-level features like colors and styles. When integrated into VLMs and evaluated on 20 VQA benchmarks, CLIP excels at text-intensive tasks, while DINO slightly outperforms on vision-centric ones. Variants of language supervision (e.g., sigmoid loss, pre-trained language encoders) yield limited gains. Our findings provide scientific insights into vision encoder design and its impact on VLM performance.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.