Task-Aware Reduction for Scalable LLM-Database Systems (2510.11813v1)
Abstract: LLMs are increasingly applied to data-intensive workflows, from database querying to developer observability. Yet the effectiveness of these systems is constrained by the volume, verbosity, and noise of real-world text-rich data such as logs, telemetry, and monitoring streams. Feeding such data directly into LLMs is costly, environmentally unsustainable, and often misaligned with task objectives. Parallel efforts in LLM efficiency have focused on model- or architecture-level optimizations, but the challenge of reducing upstream input verbosity remains underexplored. In this paper, we argue for treating the token budget of an LLM as an attention budget and elevating task-aware text reduction as a first-class design principle for language -- data systems. We position input-side reduction not as compression, but as attention allocation: prioritizing information most relevant to downstream tasks. We outline open research challenges for building benchmarks, designing adaptive reduction pipelines, and integrating token-budget--aware preprocessing into database and retrieval systems. Our vision is to channel scarce attention resources toward meaningful signals in noisy, data-intensive workflows, enabling scalable, accurate, and sustainable LLM--data integration.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.