Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 147 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 96 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 398 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

The Role of Congeniality in Multiple Imputation for Doubly Robust Causal Estimation (2510.11633v1)

Published 13 Oct 2025 in stat.ME and stat.AP

Abstract: This paper provides clear and practical guidance on the specification of imputation models when multiple imputation is used in conjunction with doubly robust estimation methods for causal inference. Through theoretical arguments and targeted simulations, we show that when a confounder has missing data the corresponding imputation model must include all variables used in either the propensity score model or the outcome model, and that these variables must appear in the same functional form as in the final analysis. Violating these conditions can lead to biased treatment effect estimates, even when both components of the doubly robust estimator are correctly specified. We present a mathematical framework for doubly robust estimation combined with multiple imputation, establish the theoretical requirements for proper imputation in this setting, and demonstrate the consequences of misspecification through simulation. Based on these findings, we offer concrete recommendations to ensure valid inference when using multiple imputation with doubly robust methods in applied causal analyses.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.