Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 190 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

LLM-Oriented Token-Adaptive Knowledge Distillation (2510.11615v1)

Published 13 Oct 2025 in cs.CL and cs.AI

Abstract: Knowledge distillation (KD) is a key technique for compressing large-scale LLMs, yet prevailing logit-based methods typically employ static strategies that are misaligned with the dynamic learning process of student models. These methods typically treat all tokens indiscriminately and apply a single, fixed temperature, resulting in suboptimal knowledge transfer. To address these limitations, we propose LLM-Oriented Token-Adaptive Knowledge Distillation (AdaKD), a novel framework that adapts the distillation process to the real-time learning state of each token. AdaKD consists of two synergistic modules driven by a unified token difficulty metric. First, our Loss-Driven Adaptive Token Focusing (LATF) module dynamically adjusts the distillation focus by monitoring the student's learning stability, concentrating computational resources on the most valuable tokens at each training phase. Second, we introduce Inverse Difficulty Temperature Scaling (IDTS), a counterintuitive yet effective token-level temperature strategy. It employs low temperatures for difficult tokens for targeted error correction, and high temperatures for easy tokens to encourage students to learn from the teacher's complete and smooth output distribution, thereby enhancing generalization. As a plug-and-play framework, AdaKD can consistently improve the performance of various distillation methods on multiple model architectures and benchmarks.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.