Papers
Topics
Authors
Recent
2000 character limit reached

Survey Response Generation: Generating Closed-Ended Survey Responses In-Silico with Large Language Models

Published 13 Oct 2025 in cs.CL and cs.CY | (2510.11586v1)

Abstract: Many in-silico simulations of human survey responses with LLMs focus on generating closed-ended survey responses, whereas LLMs are typically trained to generate open-ended text instead. Previous research has used a diverse range of methods for generating closed-ended survey responses with LLMs, and a standard practice remains to be identified. In this paper, we systematically investigate the impact that various Survey Response Generation Methods have on predicted survey responses. We present the results of 32 mio. simulated survey responses across 8 Survey Response Generation Methods, 4 political attitude surveys, and 10 open-weight LLMs. We find significant differences between the Survey Response Generation Methods in both individual-level and subpopulation-level alignment. Our results show that Restricted Generation Methods perform best overall, and that reasoning output does not consistently improve alignment. Our work underlines the significant impact that Survey Response Generation Methods have on simulated survey responses, and we develop practical recommendations on the application of Survey Response Generation Methods.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.