Papers
Topics
Authors
Recent
2000 character limit reached

Query-Specific GNN: A Comprehensive Graph Representation Learning Method for Retrieval Augmented Generation (2510.11541v1)

Published 13 Oct 2025 in cs.LG and cs.AI

Abstract: Retrieval-augmented generation (RAG) has demonstrated its ability to enhance LLMs by integrating external knowledge sources. However, multi-hop questions, which require the identification of multiple knowledge targets to form a synthesized answer, raise new challenges for RAG systems. Under the multi-hop settings, existing methods often struggle to fully understand the questions with complex semantic structures and are susceptible to irrelevant noise during the retrieval of multiple information targets. To address these limitations, we propose a novel graph representation learning framework for multi-hop question retrieval. We first introduce a Multi-information Level Knowledge Graph (Multi-L KG) to model various information levels for a more comprehensive understanding of multi-hop questions. Based on this, we design a Query-Specific Graph Neural Network (QSGNN) for representation learning on the Multi-L KG. QSGNN employs intra/inter-level message passing mechanisms, and in each message passing the information aggregation is guided by the query, which not only facilitates multi-granular information aggregation but also significantly reduces the impact of noise. To enhance its ability to learn robust representations, we further propose two synthesized data generation strategies for pre-training the QSGNN. Extensive experimental results demonstrate the effectiveness of our framework in multi-hop scenarios, especially in high-hop questions the improvement can reach 33.8\%. The code is available at: https://github.com/Jerry2398/QSGNN.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

GitHub

Tweets

Sign up for free to view the 2 tweets with 0 likes about this paper.