Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Multi-View Graph Feature Propagation for Privacy Preservation and Feature Sparsity (2510.11347v1)

Published 13 Oct 2025 in cs.LG and cs.AI

Abstract: Graph Neural Networks (GNNs) have demonstrated remarkable success in node classification tasks over relational data, yet their effectiveness often depends on the availability of complete node features. In many real-world scenarios, however, feature matrices are highly sparse or contain sensitive information, leading to degraded performance and increased privacy risks. Furthermore, direct exposure of information can result in unintended data leakage, enabling adversaries to infer sensitive information. To address these challenges, we propose a novel Multi-view Feature Propagation (MFP) framework that enhances node classification under feature sparsity while promoting privacy preservation. MFP extends traditional Feature Propagation (FP) by dividing the available features into multiple Gaussian-noised views, each propagating information independently through the graph topology. The aggregated representations yield expressive and robust node embeddings. This framework is novel in two respects: it introduces a mechanism that improves robustness under extreme sparsity, and it provides a principled way to balance utility with privacy. Extensive experiments conducted on graph datasets demonstrate that MFP outperforms state-of-the-art baselines in node classification while substantially reducing privacy leakage. Moreover, our analysis demonstrates that propagated outputs serve as alternative imputations rather than reconstructions of the original features, preserving utility without compromising privacy. A comprehensive sensitivity analysis further confirms the stability and practical applicability of MFP across diverse scenarios. Overall, MFP provides an effective and privacy-aware framework for graph learning in domains characterized by missing or sensitive features.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.