Automated Skill Decomposition Meets Expert Ontologies: Bridging the Granularity Gap with LLMs (2510.11313v1)
Abstract: This paper investigates automated skill decomposition using LLMs and proposes a rigorous, ontology-grounded evaluation framework. Our framework standardizes the pipeline from prompting and generation to normalization and alignment with ontology nodes. To evaluate outputs, we introduce two metrics: a semantic F1-score that uses optimal embedding-based matching to assess content accuracy, and a hierarchy-aware F1-score that credits structurally correct placements to assess granularity. We conduct experiments on ROME-ESCO-DecompSkill, a curated subset of parents, comparing two prompting strategies: zero-shot and leakage-safe few-shot with exemplars. Across diverse LLMs, zero-shot offers a strong baseline, while few-shot consistently stabilizes phrasing and granularity and improves hierarchy-aware alignment. A latency analysis further shows that exemplar-guided prompts are competitive - and sometimes faster - than unguided zero-shot due to more schema-compliant completions. Together, the framework, benchmark, and metrics provide a reproducible foundation for developing ontology-faithful skill decomposition systems.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.