Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 97 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 432 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

FedLoRA-Optimizer: Federated LoRA Fine-Tuning with Global and Local Optimization in Heterogeneous Data Scenarios (2510.11274v1)

Published 13 Oct 2025 in cs.LG

Abstract: Federated efficient fine-tuning has emerged as an approach that leverages distributed data and computational resources across nodes to address the challenges of large-scale fine-tuning and privacy preservation. The Low-Rank Adaptation (LoRA) enables efficient fine-tuning of large-scale pre-trained models by introducing trainable low-rank matrices into weight updates.However, in heterogeneous data scenarios, client drift weakens the generalization of the global model, and local models often fail to meet the personalized needs of individual clients.Moreover, existing federated LoRA efficient fine-tuning techniques overlook fine-grained analysis of the tuning matrices. To address this, we conducted preliminary experiments and found that different LoRA matrices exhibit different sensitivity to changes in the direction and magnitude of their vectors.We thus propose a fine-grained federated LoRA tuning method. By fine-tuning the more sensitive directional vectors in the A matrix, which encode shared knowledge, our method learns shared features more effectively across clients and enhances global generalization. Simultaneously, by fine-tuning the more sensitive magnitude vectors in the B matrix, which encode personalized knowledge, our method better captures personalized knowledge, enabling detailed adaptation to local data. The method uses a pipeline combining global and local optimizers. Global optimization further improves local models, achieving collaborative optimization between global and local levels. This improves both the generalization ability of the global model and the personalized adaptation of local models under heterogeneous data scenarios. Experiments on Databricks-Dolly-15k and Natural Instructions with LLaMA2-7B and Deepseek-7B confirm that our method improves global performance by 0.39% and local performance by 0.59%.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.