Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 150 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 26 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 211 tok/s Pro
GPT OSS 120B 435 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Efficient In-Memory Acceleration of Sparse Block Diagonal LLMs (2510.11192v1)

Published 13 Oct 2025 in cs.AR and cs.LG

Abstract: Structured sparsity enables deploying LLMs on resource-constrained systems. Approaches like dense-to-sparse fine-tuning are particularly compelling, achieving remarkable structured sparsity by reducing the model size by over 6.7x, while still maintaining acceptable accuracy. Despite this reduction, LLM inference, especially the decode stage being inherently memory-bound, is extremely expensive on conventional Von-Neumann architectures. Compute-in-memory (CIM) architectures mitigate this by performing computations directly in memory, and when paired with sparse LLMs, enable storing and computing the entire model in memory, eliminating the data movement on the off-chip bus and improving efficiency. Nonetheless, naively mapping sparse matrices onto CIM arrays leads to poor array utilization and diminished computational efficiency. In this paper, we present an automated framework with novel mapping and scheduling strategies to accelerate sparse LLM inference on CIM accelerators. By exploiting block-diagonal sparsity, our approach improves CIM array utilization by over 50%, achieving more than 4x reduction in both memory footprint and the number of required floating-point operations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.