Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 434 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Enhanced Sampling for Efficient Learning of Coarse-Grained Machine Learning Potentials (2510.11148v1)

Published 13 Oct 2025 in physics.chem-ph, cs.LG, and physics.comp-ph

Abstract: Coarse-graining (CG) enables molecular dynamics (MD) simulations of larger systems and longer timescales that are otherwise infeasible with atomistic models. Machine learning potentials (MLPs), with their capacity to capture many-body interactions, can provide accurate approximations of the potential of mean force (PMF) in CG models. Current CG MLPs are typically trained in a bottom-up manner via force matching, which in practice relies on configurations sampled from the unbiased equilibrium Boltzmann distribution to ensure thermodynamic consistency. This convention poses two key limitations: first, sufficiently long atomistic trajectories are needed to reach convergence; and second, even once equilibrated, transition regions remain poorly sampled. To address these issues, we employ enhanced sampling to bias along CG degrees of freedom for data generation, and then recompute the forces with respect to the unbiased potential. This strategy simultaneously shortens the simulation time required to produce equilibrated data and enriches sampling in transition regions, while preserving the correct PMF. We demonstrate its effectiveness on the M\"uller-Brown potential and capped alanine, achieving notable improvements. Our findings support the use of enhanced sampling for force matching as a promising direction to improve the accuracy and reliability of CG MLPs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.