Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 77 tok/s Pro
Kimi K2 159 tok/s Pro
GPT OSS 120B 431 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

A Comprehensive Forecasting-Based Framework for Time Series Anomaly Detection: Benchmarking on the Numenta Anomaly Benchmark (NAB) (2510.11141v1)

Published 13 Oct 2025 in cs.LG

Abstract: Time series anomaly detection is critical for modern digital infrastructures, yet existing methods lack systematic cross-domain evaluation. We present a comprehensive forecasting-based framework unifying classical methods (Holt-Winters, SARIMA) with deep learning architectures (LSTM, Informer) under a common residual-based detection interface. Our modular pipeline integrates preprocessing (normalization, STL decomposition), four forecasting models, four detection methods, and dual evaluation through forecasting metrics (MAE, RMSE, PCC) and detection metrics (Precision, Recall, F1, AUC). We conduct the first complete evaluation on the Numenta Anomaly Benchmark (58 datasets, 7 categories) with 232 model training runs and 464 detection evaluations achieving 100\% success rate. LSTM achieves best performance (F1: 0.688, ranking first or second on 81\% of datasets) with exceptional correlation on complex patterns (PCC: 0.999). Informer provides competitive accuracy (F1: 0.683) with 30\% faster training. Classical methods achieve perfect predictions on simple synthetic data with 60 lower cost but show 2-3 worse F1-scores on real-world datasets. Forecasting quality dominates detection performance: differences between detection methods (F1: 0.621-0.688) are smaller than between forecasting models (F1: 0.344-0.688). Our findings provide evidence-based guidance: use LSTM for complex patterns, Informer for efficiency-critical deployments, and classical methods for simple periodic data with resource constraints. The complete implementation and results establish baselines for future forecasting-based anomaly detection research.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.