Papers
Topics
Authors
Recent
2000 character limit reached

PhysioME: A Robust Multimodal Self-Supervised Framework for Physiological Signals with Missing Modalities (2510.11110v1)

Published 13 Oct 2025 in cs.LG and cs.AI

Abstract: Missing or corrupted modalities are common in physiological signal-based medical applications owing to hardware constraints or motion artifacts. However, most existing methods assume the availability of all modalities, resulting in substantial performance degradation in the absence of any modality. To overcome this limitation, this study proposes PhysioME, a robust framework designed to ensure reliable performance under missing modality conditions. PhysioME adopts: (1) a multimodal self-supervised learning approach that combines contrastive learning with masked prediction; (2) a Dual-PathNeuroNet backbone tailored to capture the temporal dynamics of each physiological signal modality; and (3) a restoration decoder that reconstructs missing modality tokens, enabling flexible processing of incomplete inputs. The experimental results show that PhysioME achieves high consistency and generalization performance across various missing modality scenarios. These findings highlight the potential of PhysioME as a reliable tool for supporting clinical decision-making in real-world settings with imperfect data availability.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.