Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 203 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

CoDefend: Cross-Modal Collaborative Defense via Diffusion Purification and Prompt Optimization (2510.11096v1)

Published 13 Oct 2025 in cs.CV

Abstract: Multimodal LLMs (MLLMs) have achieved remarkable success in tasks such as image captioning, visual question answering, and cross-modal reasoning by integrating visual and textual modalities. However, their multimodal nature also exposes them to adversarial threats, where attackers can perturb either modality or both jointly to induce harmful, misleading, or policy violating outputs. Existing defense strategies, such as adversarial training and input purification, face notable limitations: adversarial training typically improves robustness only against known attacks while incurring high computational costs, whereas conventional purification approaches often suffer from degraded image quality and insufficient generalization to complex multimodal tasks. In this work, we focus on defending the visual modality, which frequently serves as the primary entry point for adversarial manipulation. We propose a supervised diffusion based denoising framework that leverages paired adversarial clean image datasets to fine-tune diffusion models with directional, task specific guidance. Unlike prior unsupervised purification methods such as DiffPure, our approach achieves higher quality reconstructions while significantly improving defense robustness in multimodal tasks. Furthermore, we incorporate prompt optimization as a complementary defense mechanism, enhancing resistance against diverse and unseen attack strategies. Extensive experiments on image captioning and visual question answering demonstrate that our method not only substantially improves robustness but also exhibits strong transferability to unknown adversarial attacks. These results highlight the effectiveness of supervised diffusion based denoising for multimodal defense, paving the way for more reliable and secure deployment of MLLMs in real world applications.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube