Decoupled Multimodal Fusion for User Interest Modeling in Click-Through Rate Prediction (2510.11066v1)
Abstract: Modern industrial recommendation systems improve recommendation performance by integrating multimodal representations from pre-trained models into ID-based Click-Through Rate (CTR) prediction frameworks. However, existing approaches typically adopt modality-centric modeling strategies that process ID-based and multimodal embeddings independently, failing to capture fine-grained interactions between content semantics and behavioral signals. In this paper, we propose Decoupled Multimodal Fusion (DMF), which introduces a modality-enriched modeling strategy to enable fine-grained interactions between ID-based collaborative representations and multimodal representations for user interest modeling. Specifically, we construct target-aware features to bridge the semantic gap across different embedding spaces and leverage them as side information to enhance the effectiveness of user interest modeling. Furthermore, we design an inference-optimized attention mechanism that decouples the computation of target-aware features and ID-based embeddings before the attention layer, thereby alleviating the computational bottleneck introduced by incorporating target-aware features. To achieve comprehensive multimodal integration, DMF combines user interest representations learned under the modality-centric and modality-enriched modeling strategies. Offline experiments on public and industrial datasets demonstrate the effectiveness of DMF. Moreover, DMF has been deployed on the product recommendation system of the international e-commerce platform Lazada, achieving relative improvements of 5.30% in CTCVR and 7.43% in GMV with negligible computational overhead.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.