Zero-shot Face Editing via ID-Attribute Decoupled Inversion (2510.11050v1)
Abstract: Recent advancements in text-guided diffusion models have shown promise for general image editing via inversion techniques, but often struggle to maintain ID and structural consistency in real face editing tasks. To address this limitation, we propose a zero-shot face editing method based on ID-Attribute Decoupled Inversion. Specifically, we decompose the face representation into ID and attribute features, using them as joint conditions to guide both the inversion and the reverse diffusion processes. This allows independent control over ID and attributes, ensuring strong ID preservation and structural consistency while enabling precise facial attribute manipulation. Our method supports a wide range of complex multi-attribute face editing tasks using only text prompts, without requiring region-specific input, and operates at a speed comparable to DDIM inversion. Comprehensive experiments demonstrate its practicality and effectiveness.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.