Papers
Topics
Authors
Recent
2000 character limit reached

LogiNumSynth: Synthesizing Joint Logical-Numerical Reasoning Problems for Language Models (2510.11031v1)

Published 13 Oct 2025 in cs.CL

Abstract: Joint logical-numerical reasoning remains a major challenge for LLMs, yet existing datasets rely on fixed rule sets and offer limited control over task complexity, constraining their generalizability for evaluation and training. We present LogiNumSynth, a flexible natural language problem synthesizer that synthesizes tasks requiring proficiency in joint logical reasoning (e.g., rule-based reasoning) and numerical reasoning (e.g., arithmetic computation). LogiNumSynth supports fine-grained control over reasoning world richness, logical reasoning depth, and the complexity of numerical computations, enabling flexible data synthesis across difficulty levels. We demonstrate three key contributions: (1) Synthesizer -- synthesizing fully controllable joint reasoning tasks over natural language; (2) Evaluation & Process Analysis -- evaluating both process accuracy and answer accuracy; (3) Targeted Training -- using synthesized data to enhance LLMs' reasoning performance. Experiments with multiple LLMs highlight persistent weaknesses in logical-numerical reasoning, showing that LogiNumSynth can serve as both a diagnostic tool and a source of targeted supervision for advancing integrated reasoning skills.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper: